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Financial commentators have called for more research on sustainable spending rates for individuals
and endowments holding diversified portfolios. We present a forward-looking framework for
analyzing spending rates and introduce a simple measure, stochastic present value, that
parsimoniously meshes investment risk and return, mortality estimates, and spending rates
without resorting to opaque Monte Carlo simulations. Applying it with reasonable estimates of
future returns, we find payout ratios should be lower than those many advisors recommend. The
proposed method helps analysts advise their clients how much they can consume from their savings,
whether they can retire early, and how to allocate their assets.

“Retirees Don’t Have to Be So Frugal: Here Is a Case for Withdrawing Up to 6 Percent a Year . . .”

Jonathan Clements
Wall Street Journal (17 November 2004)

etirees and endowment and foundation
trustees share a common dilemma: How
much can we spend without running out
of money during our lifetime? Sustain-

able withdrawal and spending rates have been the
subject of sporadic academic research over the
years. The issue has developed new urgency, how-
ever, as the wave of North American Baby
Boomers approaches retirement and seeks guid-
ance on “what’s next” for their retirement savings.
Complicating the issue is the likelihood that Baby
Boomers can expect to live for a long (but random)
time in retirement as medical advances stretch
human lifetimes.

For endowments and foundations, this topic
has a 30-year history going back to a special session
at the American Economics Association devoted to
spending rates, in which Tobin (1974) cautioned
against consuming anything other than dividends
and interest income.1 Also in the 1970s, Ennis and
Williamson (1976) analyzed appropriate asset allo-
cation in conjunction with a given spending policy.
More recently, Altschuler (2000) argued that
endowments are actually “too stingy” and are not
spending enough; Dybvig (1999) discussed how a
pseudo portfolio insurance scheme used in asset
allocation can protect a desired level of spending;

and Hannon and Hammond (2003) discussed the
impact of the recent (poor) market performance on
the ability to sustain payouts.

In the parallel retirement planning arena, Ben-
gen (1994), Ho, Milevsky, and Robinson (1994),
Cooley, Hubbard, and Walz (1998, 2003), Pye
(2000), Ameriks, Veres, and Warshawsky (2001),
and Guyton (2004) have run financial experiments
incorporating historical, simulated, and scrambled
returns to quantify the sustainability of various ad
hoc spending policies and consumption rates for
retired individuals. These results usually advo-
cated withdrawals in the 4–6 percent range of initial
capital depending on age and asset allocation and
then increasing at the rate of inflation and/or con-
tingent on market performance.

The problems with the growing number of
these and similar studies based on Monte Carlo
simulations—which are intellectually motivated
by the “game of life” simulations envisioned by
Markowitz (1991)—are that they (1) are difficult to
replicate, (2) conduct only a minimal number of
simulations, and (3) provide little pedagogical intu-
ition on the financial trade-off between retirement
risk and return.2 

Arnott (2004, p. 6) claimed that “our industry
pays scant attention to the concept of sustainable
spending, which is key to effective strategic plan-
ning for corporate pensions, public pensions,
foundations, and endowments—even for individ-
uals.”  Financial advisors continue to test the sus-
tainability of spending strategies, but the financial
literature lacks a coherent modeling framework on
which to base the discussion.

Moshe Milevsky is associate professor of finance at the
Schulich School of Business at York University, Toronto,
and executive director of the Individual Finance and In-
surance Decisions (IFID) Centre, Toronto. Chris Robin-
son is associate professor of finance at the Atkinson School
of Administrative Studies, York University, Toronto.

R



Financial Analysts Journal

90 www.cfapubs.org ©2005, CFA Institute

We provide an intuitive and consistent plan-
ning model by deriving an analytic relationship
between spending, aging, and sustainability in a
random portfolio environment. We introduce the
concept of stochastic present value (SPV) and an
expression for the probability that an initial corpus
or investment (nest egg) will be depleted under a
fixed consumption rule when both rates of return
and time until death are stochastic. And, in contrast
to almost all other authors who have tackled this
problem, we do not depend on Monte Carlo simu-
lations or historical (bootstrap) studies. Instead, we
base the analysis on the SPV and a continuous-time
approximation under lognormal returns and expo-
nential lifetimes. 

In the case of a foundation or endowment with
an infinite horizon (perpetual consumption), this
formula is exact. In the case of a random finite
future lifetime (the situation of a retiree), the for-
mula is based on moment-matching approxima-
tions, which target the first and second moments of
the “true” stochastic present value. The results are
remarkably accurate when compared with more
costly and time-consuming simulations.

We provide numerical examples to demon-
strate the versatility of the closed-form expression
for the SPV in determining sustainable withdrawal
rates and their respective probabilities. This for-
mula, which can easily be implemented in Excel,
produces results that are within the standard error
of extensive Monte Carlo simulations.3 

The Retirement Finances Triangle
The main qualitative contribution of this article
can be understood by reference to the triangle in
Figure 1. It provides a graphical illustration of the
relationships among the three most important fac-
tors in retirement planning: spending rates, invest-
ment asset allocation, and mortality (determined
by gender and age). We link these three factors in

one parsimonious manner by using the “probabil-
ity of retirement ruin,” where “ruin” is defined as
outliving one’s resources, as a risk metric to gauge
the relative impact of each factor and trade-offs
between them. 

We evaluate the stochastic present value of a
given spending plan at a given age under a given
portfolio allocation at the initial level of wealth to
determine the probability that the plan is sustain-
able. Increasing the age of the retiree at retirement,
reducing the spending rate, or increasing the port-
folio return will each shift the mass of the SPV closer
to zero (which means reducing the area inside the
triangle) and thus generate a higher probability that
an initial nest egg will be enough to sustain the plan.
Reducing the age at retirement, increasing the
spending rate, or reducing the portfolio return will
shift the mass of the SPV away from zero—
increasing the area inside the triangle—and will thus
increase the probability of ruin.

Stochastic Present Value of 
Spending
The SPV concept is borrowed from actuaries in
the insurance industry, who use a similar idea to
compute the distribution of the present value of
mortality-contingent liabilities, such as pension
annuities and life insurance policies. At any given
time, an insurance company is thus able to quan-
tify the amount of reserves needed today to fulfill
all future liabilities with 99 percent or 95 percent
certainty. 

The same idea can be applied to retirement
planning. Retirees can use an SPV model to com-
pute the size of the retirement portfolio they need
in order to draw down a specified annual amount
while not incurring more than a specified probabil-
ity of running out of money during their lifetime.  

Figure 1. Retirement Finances Triangle
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In the language of stochastic calculus, the prob-
ability that a diffusion process that starts at a value
of w will hit zero prior to an independent “killing
time” can be represented as the probability that a
suitably defined SPV is greater than the same w.
Imagine that you invest a lump sum of money in a
portfolio earning a real (after-inflation) rate of return
of R percent a year and you plan to consume/spend
a fixed real dollar each and every year until some
horizon denoted by T. If the horizon and investment
rate of return are certain, the present value (PV) of
your consumption at initial time zero, t0, is

(1)

which is the textbook formula for an ordinary simple
annuity of $1. In a deterministic world, if you start
retirement with a nest egg greater than the PV in
Equation 1 times your desired annual consump-
tion, your money will last for the rest of your T-year
life. If you have less than this amount, you will be
“ruined” at some age prior to death. 

For example, if R = 7 percent and T = 25, the
required nest egg is 11.65 (the PV in Equation 1)
times your real consumption. If you have more
than this lump sum of wealth at retirement, your
plans are sustainable. If you start your retirement
years with 10 times your desired real annual con-
sumption, then you will run out of money in 17.79
years. Note that as T goes to infinity, which is the
endowment case, the PV converges to the number
1/R. At R = 0.07, the resulting PV is 14.28 times the
desired consumption.

Human beings have an unknown life span, and
retirement planning should account for this uncer-
tainty. Table 1 illustrates the probabilities of sur-
vival based on mortality tables from the U.S.-based
Society of Actuaries. For example, a 65-year-old
female has a 34.8 percent chance of living to age 90;
a 65-year-old male has a 23.7 percent chance of
living to age 90. Although the oft-quoted statistic
for life expectancy is somewhere between 78 and 82
years in the United States, this statistic is relevant
only at the time of birth. If pensioners reach their
retirement years, they may be facing 25–30 more
years of life with substantial probability because
conditional life expectancy increases with age.  

Should a 65-year-old plan for the 75th percen-
tile or 95th percentile of the end of the mortality
table? What T value should be used in Equation 1?
The same questions apply to investment return R.
The average real investment returns from a broadly

diversified portfolio of U.S. equity during the past
75 years have been in the vicinity of 6–9 percent,
according to Ibbotson Associates (2004), but the
year-by-year numbers can vary widely. So, again,
what number should be used in Equation 1?

The aim is not to guess or take point estimates
but, rather, to actually account for this uncertainty
within the model itself. In a lecture at Stanford
University, Nobel Laureate William F. Sharpe
amusingly called the (misleading) approach that
uses fixed returns and fixed dates of death “finan-
cial planning in fantasyland.”

So, in contrast to the deterministic case—in
which both the horizon and the investment return
are certain—when both of these variables are sto-
chastic, the analog to Equation 1 is stochastic present
value, defined as

(2a)

where the new variable  denotes the random
time of death (in years) and the new variable 
denotes the random investment return during
year j. (For the infinitely lived endowment or foun-
dation,  = ∞.)

The intuition behind Equation 2a is as follows.
Looking forward, a retiree must sum up a random
number of terms, in which each denominator is also
random. The first item discounts the first year of
consumption at the first year’s random investment
return. The second item discounts the second year’s
consumption (if the individual is still alive) at the
product (the compounded rate) of the first and sec-
ond years’ random investment return. And so on.

If the investment return frequency is infinites-
imal, the summation sign in Equation 2a con-
verges to an integral and the product sign is
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Table 1. Conditional Probability of Survival at 
Age 65

To Age: Female Male

70 93.9% 92.2%
75 85.0 81.3
80 72.3 65.9
85 55.8 45.5
90 34.8 23.7
95 15.6 7.7
100 5.0 1.4

Source: Society of Actuaries RP-2000 Table (with projection).
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converted into a continuous-time diffusion pro-
cess. The continuous-time analog of Equation 2a
can be written as follows:

(2b)

where Rt denotes the total cumulative investment
return (which is random) from the initial time, t0,
until time t. The exponent of –1 discounts the $1,
conditional on survival, back to t0.

The SPV defined by either Equation 2a in dis-
crete time or Equation 2b in continuous time can
be visualized as shown in Figure 2. The stochastic
present value is a random variable with a probabil-
ity density function (PDF) that depends on the
risk–return parameters of the underlying invest-
ment-generating process and the random future
lifetime. The x-axis of Figure 2 is initial wealth,
from which a person intends to consume $1 each
year until death. For example, if one starts with an
endowment of $20 and intends to consume $1
(after inflation) a year, the probability of sustain-
ability is equal to the probability that the SPV is less
than $20. This probability corresponds to the area
under the curve to the left of the line at $20 on the
x-axis. The probability of ruin is the area under the
curve to the right of the $20 line. (Recall that the
area under any curve on the graph totals 100 per-
cent.) For any given case, a move to the left on the
curve is equivalent to a decision to consume a
higher proportion of wealth each year—because
the individual is starting with a smaller nest egg
and consuming one dollar—so, the probability that
the plan is sustainable declines. 

The precise shape and parameters governing
the SPV depend on the investment and mortality
dynamics, but the general picture is remarkably
consistent and similar to Figure 2. The SPV is
defined over positive numbers, is right skewed,
and is equal to zero at zero.

The two distinct curves in Figure 2 denote dif-
ferent cases. The solid-line curve that has more of its
area to the left of the $20 line represents a scenario
with a lower risk of ruin or shortfall. The dotted-line
curve is a higher-risk case. For example, the solid
curve could be a woman age 65 and the dotted curve
could be a woman age 50. For the same portfolio
(size and asset allocation), the woman age 65 has a
lower probability of shortfall for any given con-
sumption level because she has a shorter remaining
life span for that consumption. Or the two curves
could represent different people at the same age
consuming the same amount but with different
asset allocations; the allocation for the solid curve
provides the lower risk of failing to earn enough to
sustain the desired consumption level. What we
want to know is the actual shape of Figure 2.

The analytic contribution of this article is
implementation of a closed-form expression for the
SPV defined by Equation 2b under the assumption
that the total investment return, Rt, is generated by
a lognormal distribution—that is, an exponential
Brownian motion. This classical assumption has
many supporters—from Merton (1975) to Rubin-
stein (1991). But even from an empirical perspec-
tive, Levy and Duchin (2004) found that the
lognormal assumption “won” many of the “horse
races” when plausible distributions for historical
returns were compared. Furthermore, many popu-
lar optimizers, many asset allocation models, and
much oft-quoted common advice are based on the
classical Markowitz–Sharpe assumptions of log-
normal returns. Therefore, for the remainder of this
article, we follow this tradition.4 

Analytic Formula for Sustainable 
Spending
Three important probability distributions allow us
to derive a closed-form solution for sustainability.
The first is the ubiquitous lognormal distribution,
the second is the exponential lifetime distribution,
and the last one is the—perhaps lesser-known—
reciprocal gamma distribution. These three distri-
butions merge together in the SPV. They allow us
to solve the problem when investment return and
date of death are risky or stochastic variables.

Figure 2. SPV of Retirement Consumption
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Lognormal Random Variable. The invest-
ment total return, Rt, between time t0 and time t is
said to be lognormally distributed with a mean of
μ and standard deviation of σ if the expected total
return is

 (3a)

the expected log return is

E[ln(Rt)] = (μ – 0.5σ2)t, (3b)

the log volatility is

(3c)

and the probability law can be written as 

(3d)

where N(.) denotes the cumulative normal distri-
bution. 

For example, a mutual fund or portfolio that is
expected to earn an inflation-adjusted continuously
compounded return of μ = 7 percent a year with a
logarithmic volatility of σ = 20 percent has a
N(0.05,0.20,0) = 40.13 percent chance of earning a
negative return in any given year. But if the
expected return is a more optimistic 10 percent a
year, the chances of losing money are reduced to
N(0.08,0.20,0) = 34.46 percent. Note that the
expected value of lognormal random variable Rt is
eμt but the median value (that is, geometric mean) is
a lower e(μ–0.5σ2)t. By definition, the probability that
a lognormal random variable is less than its median
value is precisely 50 percent. The gap between
expected value eμt and median value e(μ–0.5σ2)t is
always greater than zero, proportional to the vola-
tility, and increasing in time. We will return to the
mean versus median distinction later.

Exponential Lifetime Random Variable.
The remaining lifetime random variable denoted by
the letter T is said to be exponentially distributed
with mortality rate λ if the probability law for T can
be written as

 (4a)

The expected value of the exponential lifetime ran-
dom variable is equal to and denoted by

(4b)

whereas the median value—which is the 50 percent
mark—can be computed from 

  (4c)

Note that the expected value is greater than the
median value. For example, when λ = 0.05, the
probability of living for at least 25 more years is
e–(0.05)(25) = 28.65 percent and the probability of
living for 40 more years is e–(0.05)(40) = 13.53 per-
cent. The expected lifetime is 1/0.05 = 20 years, and
the median lifetime is ln(2)/0.05 = 13.86 years. 

Although human aging does not conform to
an exponential or constant force of mortality
assumption—which means that death would occur
at a constant rate—for the purposes of estimating
a sustainable spending rate, it does a remarkably
good job when properly calibrated.

Reciprocal Gamma Random Variable. A
random variable denoted by X is the reciprocal
gamma (RG) variable distributed with parameters
α and β if the probability law for X can be written as 

(5)

Equation 5, which is the probability density
function of the RG distribution, has two degrees of
freedom, or free parameters, and is defined over
positive numbers. The two defining (α,β) parame-
ters must be greater than 0 for the PDF to properly
integrate to an area under the curve value of 1. In
fact, the parameter α must be greater than 1 for the
expectation to be defined and must be greater than
2 for the standard deviation to be defined. 

The denominator of Equation 5 includes a
gamma function, Γ(α), that is defined and can be
computed recursively as

 Γ(α) = Γ(α – 1)(α – 1). (6)

The expected (mean) value—that is, first moment—
of the RG distribution is 

E(X) = [β(α – 1)]–1, (7a)

and the second moment is

E(X2) = [β2(α – 1)(α – 2)]–1. (7b)

For example, within the context of this article, a
typical parameters pair would be α = 5 and β = 0.03.
In this case, the expected value of the RG variable
would be 1/[(0.03)(4)] = 10.

The structure of the RG random variable is
such that the probability an RG random variable is
greater than some number x is equivalent to the
probability that a gamma random variable is less
than 1/x. This fact is important (and quite helpful)
because the gamma random variable is available in
all statistical packages.
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Main Result: Exponential 
Reciprocal Gamma
Our primary claim is that if one is willing to assume
lognormal returns in a continuous-time setting, the
stochastic present value in Figure 2 is the reciprocal
gamma distributed in the limit. In other words, the
probability that the SPV is greater than the initial
wealth or nest egg, denoted by w, is 

(8)

where GammaDist(α,β|.) denotes the cumulative
distribution function of the gamma distribution (in
Microsoft Excel notation) evaluated at the parame-
ter pair (α,β). The familiar μ and σ are the return
and volatility parameters from the investment
portfolio, and λ is the mortality rate. The expected
value of the SPV is (μ – σ2 + λ)–1.

For example, start with an investment
(endowment, nest egg) of $20 that is expected to
earn a 7 percent real return in any given year with
a volatility (standard deviation) of 20 percent a
year.5 A 50-year-old (of any gender) with a median
future life span of 28.1 years intends to consume
$1 after inflation a year for the rest of his or her life.
If the median life span is 28.1 years, then by defi-
nition, the probability of survival for 28.1 years is
exactly 50 percent; so, the “implied mortality rate”
parameter is λ = ln(2)/28.1 = 0.0247. According to
Equation 8, the probability of retirement ruin,
which is the probability that the stochastic present
value of $1 consumption is greater than $20, is 26.8
percent. In the language of Figure 2, if we evaluate
the SPV at w = 20, the area to the right has a mass
of 0.268 units. The area to the left—the probability
of sustainability—has a mass of 0.732 units.6 

In the random life span of λ > 0, our result is
approximate, albeit correct to within two moments
of the true SPV density. We will show that this
issue is not significant. In the infinite horizon case
of λ = 0, our result is not an approximation. It is a
theorem that the SPV defined by Equation 2b is, in
fact, the reciprocal gamma distributed.7 

Numerical Examples
Our base case is a newly retired 65-year-old who
has a nest egg of $1,000,000 which must last for the
remainder of this individual’s life. In addition to
pensions, the retiree wants $60,000 a year in real
dollars from this nest egg (which is $6 per $100 in
the terms commonly used in practice). The $60,000
is to be created via a systematic withdrawal plan
that sells off the required number of shares/units

each month in a reverse dollar-cost-average strat-
egy. These numbers are prior to any income taxes,
and our results are for pretax consumption needs;
in addition, we are not distinguishing between tax-
sheltered and taxable plans, which is a different
important issue.

The retiree wants to know whether the stochas-
tic present value of the desired $60,000 income a
year is probabilistically less than the initial nest egg
of $1,000,000. If it is, the retiree’s standard of living
is sustainable. If the SPV of the consumption plan
is larger than $1,000,000, however, the retirement
plan is unsustainable and the individual will be
“ruined” at some point, unless of course, he or she
reduces consumption.

Table 2 provides an extensive combination of
consumption/withdrawal rates for various ages
based on our model in Equation 8 and based on
exact mortality rates instead of the exponential
approximation. The rates assume an all-equity
portfolio with expected return of 7 percent and
volatility of 20 percent. The time variable is deter-
mined by the first columns in Table 2—retirement
age, the median age at death (based on actuarial
mortality tables), and the implied hazard rate, λ,
from this median value. The entries show the risk
of ruin for annual spending rates ranging from $2
to $10 per $100 initial nest egg. 

The first rows of Table 2 are for an endowment
or foundation with an infinite horizon. The “exact”
probability of ruin is derived directly from Equa-
tion 2b and ranges from a low of 15 percent ($2
spending) to a high of 92 percent ($10 spending).8

According to Table 2, if the example person retiring
at age 65 invests the $1,000,000 nest egg in this all-
equity portfolio and withdraws the desired $60,000
a year, the exact probability of ruin is 25.3 percent. 

The approximate answer from an estimated
reciprocal gamma (ERG) formula based on an
exponential future lifetime is, at 26.2 percent prob-
ability of ruin, slightly higher than the exact out-
come. The gap between these two percentages is
only 0.9 percentage points, however, which boosts
our confidence in the model in Equation 8. Indeed,
the differences throughout Table 2 between the
results from using the model’s assumption of expo-
nential mortality—calibrated to the true median
life span—and those from using the exact mortality
table are reasonably small and do not materially
change the assessment of the retiree’s position.
Figure 3 illustrates for the base case with a range
of consumption rates the approximation error from
using the ERG formula when the “true” future
lifetime random variable is more complicated.
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For low consumption rates, the ERG formula
slightly overestimates the probability of ruin and
thus gives a more pessimistic picture. At higher
consumption rates, the exact probability of ruin is
higher than the approximation. Notice the rela-
tively small gap between the two curves, which at
its most is no more than 3–5 percent. The two curves
are at their closest when the spending rate is
between $5 and $7 per original $100.

Regardless of whether one uses the exact or the
approximate methodology, a 25 percent chance of
retirement ruin is unacceptable to most retirees.
Table 2 indicates, however, that lowering the

desired consumption or spending plan by $10,000
to a $50,000 systematic withdrawal plan can reduce
the probability of ruin to 16.8 percent (in the exact
method) or 18.9 percent (in the approximation).
And if the spending plan is further reduced to
$40,000, the probability of ruin shrinks to 9.4 per-
cent (exact) and 12.3 percent (approximate). If the
same individual were to withdraw $90,000, the
probability of ruin would be 50.5 percent (exact) or
48.3 percent (approximate). The retiree or the finan-
cial planner can determine whether these odds are
acceptable vis-à-vis the retiree’s tolerance for risk.  

Table 2. Reciprocal Gamma Approximation for Ruin Probability vs. Exact Results Using Correct 
Mortality Table

Real Annual Spending per $100 of Nest Egg

Retirement 
Age

Median Age 
at Death

Hazard 
Rate, λ $2.0 $3.0 $4.0 $5.0 $6.0 $7.0 $8.0 $9.0 $10.0

NA Infinity 0.00% Approx.: 15.1% 30.0% 45.1% 58.4% 69.4% 77.9% 84.4% 89.1% 92.5%
Exact.: 15.1 30.0 45.1 58.4 69.4 77.9 84.4 89.1 92.5
Diff.: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

50 78.1 2.47 Approx.: 4.27 10.27 18.0 26.8 35.8 44.6 52.8 60.3 66.9
Exact.: 3.04 9.10 17.8 27.7 37.8 47.2 55.5 62.6 68.5
Diff.: 1.2 1.2 0.3 –0.9 –2.0 –2.6 –2.7 –2.3 –1.6

55 83.0 2.48 Approx.: 4.26 10.23 18.0 26.7 35.7 44.5 52.7 60.2 66.8
Exact.: 2.83 8.95 18.0 28.7 39.6 49.9 59.0 66.7 73.0
Diff.: 1.4 1.3 0.0 –2.0 –3.9 –5.4 –6.3 –6.5 –6.3

60 83.4 2.96 Approx.: 3.48 8.54 15.3 23.1 31.4 39.7 47.6 55.0 61.7
Exact.: 1.82 6.36 13.7 22.9 32.9 42.7 51.7 59.6 66.4
Diff.: 1.7 2.2 1.6 0.2 –1.5 –3.0 –4.1 –4.6 –4.6

65 83.9 3.67 Approx.: 2.64 6.68 12.27 18.9 26.2 33.7 41.1 48.3 54.9
Exact.: 1.02 4.03 9.43 16.8 25.3 34.1 42.7 50.5 57.4
Diff.: 1.6 2.7 2.8 2.1 0.9 –0.4 –1.5 –2.2 –2.5

70 84.6 4.75 Approx.: 1.61 4.73 8.95 14.2 20.1 26.5 33.0 39.5 45.8
Exact.: 0.48 2.20 5.71 11.0 17.6 24.9 32.4 39.6 46.4
Diff.: 1.3 2.5 3.2 3.2 2.6 1.6 0.6 –0.1 –0.6

75 85.7 6.48 Approx.: 1.07 2.90 5.69 9.32 13.6 18.5 23.6 29.0 34.4
Exact.: 0.18 0.98 2.89 6.10 10.5 15.8 21.7 27.7 33.7
Diff.: 0.9 1.9 2.8 3.2 3.1 2.6 1.9 1.2 0.7

80 87.4 9.37 Approx.: 0.52 1.47 3.00 5.10 7.71 10.8 14.2 18.0 21.9
Exact.: 0.05 0.34 1.16 2.76 5.20 8.43 12.3 16.6 21.1
Diff.: 0.5 1.1 1.8 2.3 2.5 2.3 1.9 1.4 0.8

NA = not applicable.

Notes: Mean arithmetic portfolio return = 7 percent; standard deviation of return = 20 percent; mean geometric portfolio return =
5 percent. Differences may not be exact because of rounding.
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To understand the intuition behind the num-
bers, recall that the mean or expected value of the
SPV of $1 of real spending is 1/(μ – σ2 + λ), where
μ and σ are the investment parameters and λ is the
mortality rate parameter induced by a given
median remaining lifetime. For a 65-year-old of
either sex, the median remaining lifetime is 18.9
years (83.9 median age of death in Table 2 minus
actual age of 65) according to the RP-2000 Society
of Actuaries mortality table. To obtain the 50 per-
cent probability point with an exponential distri-
bution, we solve for e–18.9λ = 0.5, which leads to λ
= ln(2)/18.9 = 0.0367 as the implied rate of mortal-
ity. The mean value of the SPV for μ = 7 percent
and σ = 20 percent works out to 1/(0.07 – 0.04 +
0.0367), which is an average of $15 for the SPV per
dollar of desired consumption. Thus, if the retiree
intends to spend $90,000 a year, it should come as
no surprise that a nest egg of only 11 times this
amount is barely sustainable on average. Note that

the expected value of the SPV decreases in μ and λ
and increases in σ. Higher mean is good, higher
volatility is bad, and the benefit of a higher mor-
tality rate comes from reducing the length of time
over which the withdrawals are taken.

Effects of Investment Strategies
We are not entering the debate about what are the
“right” values for return expectations because our
work makes no contribution to answering that
important but contentious question. But we can use
our model to show the effect of various portfolio
composition and return assumptions. The portfolio
in Table 2 is an all-equity portfolio with mean return
of 7 percent and volatility of 20 percent. As
expected, if the mean return is higher or the vola-
tility lower, with all else held constant, the sustain-
ability improves, and vice versa. What happens,
however, if we change both parameters in the same
direction, which is what we normally expect in an
efficient financial market?

Consider a common portfolio that is 50 percent
equity and 50 percent bonds, which we will say has
a mean arithmetic return of 5 percent and volatility
of 12 percent. Table 3 shows the probabilities of
unsustainable spending for various ages and
spending rates per $100 of nest egg for such a
balanced portfolio. 

Consider first the base case of a newly retired
65-year-old who has a nest egg of $1,000,000, from
which the retiree wants $60,000 a year. In this case,
Table 3 shows that the risk of ruin is a bit lower, at
24 percent, than it was for the all-equity portfolio but
not much lower. Most retirees would be unhappy
with that chance. Again, cutting consumption low-
ers the probability of ruin; a reduction to $40,000
would lower the chance of ruin to a more acceptable
9 percent. If the person waits until age 70 to retire
and wants to withdraw $60,000 a year as planned,
the risk of ruin drops to 17.6 percent.  

Figure 3. Approximation vs. Exact Probability 
That Given Spending Rate Is Not 
Sustainable

Note: Age = 65; mean arithmetic portfolio return = 7 percent;
standard deviation of return = 20 percent.
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Table 3. Ruin Probability Approximation for Balanced Portfolio of 50 Percent Equity and 
50 Percent Bonds

Real Annual Spending per $100 of Initial Nest Egg

Retirement 
Age

Median Age 
at Death

Hazard
Rate, λ $2.00 $3.00 $4.00 $5.00 $6.00 $7.00 $8.00 $9.00 $10.00

Endowment Infinity 0.00% 6.7% 24.9% 49.0% 70.0% 84.3% 92.5% 96.6% 98.6% 99.4%
50 78.1 2.47 1.8 6.4 14.0 24.0 35.2 46.3 56.8 66.0 73.8
55 83.0 2.48 1.8 6.3 14.0 24.0 35.1 46.2 56.7 65.9 73.7
60 83.4 2.96 1.5 5.2 11.6 20.1 29.9 40.1 50.0 59.1 67.2
65 83.9 3.67 1.1 4.0 9.0 15.8 24.0 32.8 41.8 50.5 58.5
70 84.6 4.75 0.8 2.8 6.3 11.4 17.6 24.7 32.2 39.8 47.2
75 85.7 6.48 0.5 1.7 3.9 7.2 11.4 16.3 21.9 27.8 33.9
80 87.4 9.37 0.3 0.9 2.0 3.8 6.2 9.1 12.5 16.3 20.5

Note: Mean arithmetic portfolio return = 5 percent; standard deviation of return = 12 percent; mean geometric portfolio return =
4.28 percent.
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In general, for cases that are toward the lower
left of Tables 2 and 3, the probability of ruin falls
somewhat with a lower-risk/lower-return portfo-
lio. In contrast, for cases that are toward the upper
right of the tables, the risk of ruin is higher with a
lower-risk/lower-return portfolio. The reason for
these opposing effects lies in the nature of the con-
sumption pattern. If a retiree wants a lot of income
from a portfolio, relative to the size of the portfolio
and/or relative to his or her expected remaining
lifetime, then the risk of shortfall can be reduced
only by gambling on a high-risk/high-return port-
folio. Changing to a high-risk/high-return portfo-
lio does not give the retiree a satisfactory reduction
in the risk of ruin, however, because the values in
the upper right of Table 2 are all unacceptably high
from any point of view. If the retiree will settle for
a more reasonable level of consumption—say, no
more than $6 per $100 at age 65—the more balanced
portfolio also reduces the risk of ruin. (Note that for
Table 3, we reduced volatility by 8 percent but
return by only 2 percent. Changes in return have
more effect than changes in volatility.)

This message is particularly unsettling for
endowments that are required to pay out in perpe-
tuity. Their payout rates are almost always in the
range of 4–6 percent of principal. But the odds of
maintaining the real value of that payout are poor
for either a balanced or an all-equity portfolio, with
the probability of ruin ranging from 45 percent to
84 percent, depending on the payout and the asset
allocation. An endowment can always maintain a
payout of some percentage of the market value of
assets in perpetuity, but our results are saying that
the real value of whatever is paid out will probably
have to be reduced, thus providing less and less
real value for student scholarships, research
projects, or whatever is funded by the endowment.
Lest the reader think this judgment is simply a case
of unreasonably pessimistic investment return

assumptions, consider the following. Even with a
long-run real return expected to be 9 percent with
a standard deviation of 16 percent—a remarkable
performance if anyone could maintain it over the
long run—the risk of ruin for a perpetual endow-
ment is 9.5 percent for a perpetual payout of real $4
per $100 of principal today. The risk of ruin rises to
19.6 percent if the payout is $5 and to 32.4 percent
if the payout is $6.

In Table 4, we pose the question of which
action helps the base-case 65-year-old more—
reducing consumption or changing the investment
portfolio. The “Portfolio” column headings consist
of possible combinations of mean and volatility to
represent various investment strategies; they range
from low risk and low return to high risk and high
return. Down the side is consumption per $100 of
nest egg. At every level of consumption, Table 4
shows that the choice of investment portfolio does
not matter much. At levels of $2 or $3 per $100, any
portfolio gives a low probability of ruin. At $4 per
$100, the individual’s tolerance for risk could begin
to affect the portfolio choice. Once the consumption
rises to $5 per $100, the probabilities of ruin would
be unacceptable to most retirees. No matter what
reasonable portfolio is chosen, asset allocation will
not turn a bad situation into a good one.

Another interesting insight comes from exam-
ining the interplay between the three main param-
eters in our formula. Increasing the fixed mortality
rate, λ, by 100 bps—which reduces the median
future lifetime from ln(2)/λ to ln(2)/(λ + 0.01)—
obviously reduces the probability of retirement
ruin, all else being equal. The same reduction can
also be achieved by increasing the portfolio return
by 200 bps together with increasing the portfolio
variance by 100 bps. Recall that the (α,β) parameter
arguments in Equation 8 can be expressed as a
function of (μ + 2λ) and (σ2 + λ). Thus, having a
longer life span is interchangeable with decreasing
the portfolio return or increasing portfolio variance. 

Table 4. Probability of Ruin for Various Portfolios at Age 65
Portfolio: Mean Arithmetic Return and [Volatility]

Consumption per 
$100 of Nest Egg 4% [10%] 5% [12%] 6% [15%] 7% [17%] 8% [20%]

$2.00 1.5% 1.1% 1.3% 1.2% 1.6%
$3.00 5.0 4.0 4.1 3.8 4.5
$4.00 11.1 9.0 8.8 8.0 8.8
$5.00 19.1 15.8 15.1 13.7 14.4
$6.00 28.4 24.0 22.5 20.4 20.8
$7.00 38.2 32.8 30.6 27.7 27.6
$8.00 47.8 41.8 38.8 35.3 34.7
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Another perspective on the issue can be
gained by fixing a “ruin tolerance” level and then
inverting Equation 8 to solve for the level of spend-
ing that satisfies the given probability. Leibowitz
and Henriksson (1989) advanced this idea within
the context of a static portfolio asset allocation.
Browne (1995, 1999) and then Young (2004) solved
the dynamic versions of this portfolio control prob-
lem for a finite and a random time horizon, respec-
tively. The inversion process is relatively easy
because a number of software packages have a
built-in function for the inverse of the gamma func-
tion in which the argument is the probability rather
than the spending rate.

Table 5 takes this inverted approach by solv-
ing for the sustainable spending rate that results in
a given probability of ruin for the same set of pos-
sible portfolios used in Table 4. On the one hand, if
a 65-year-old retiree is willing to assume or “live
with” a ruin probability of only 5 percent (Panel B),
which means that he desires a 95 percent chance of
sustainability, the most he can consume from a
balanced portfolio with mean return of 5 percent
and volatility of 12 percent is $3.24 per initial nest
egg of $100. On the other hand, if he is willing to
tolerate a 10 percent chance of ruin (Panel A), the
maximum consumption level increases from $3.24
to $4.17 per $100. The higher the ruin-tolerance

level, the more he can consume.9 An increase in
return or a decrease in volatility always raises sus-
tainable consumption, but if risk and return tend to
move together in the long run, as is generally
observed in practice, changes in asset allocation
will not have a major effect. 

Conclusion and Next Steps
Our analysis using the stochastic present value pro-
vides an analytic method for assessing the sustain-
ability of retirement plans and offers new insights
into, in particular, retirement longevity risk.

The distinction between Monte Carlo simula-
tions and the analytical techniques promoted in
this article is more than simply a question of aca-
demic tastes.10 Although simulations will continue
to have a legitimate and important role in the field
of wealth management, our simple formula can
serve as a test and calibration tool for more complex
simulation. It can also explain the link between the
three fundamental variables affecting retirement
planning: spending rates, uncertain longevity, and
uncertain returns. The formula makes clear that
increasing the mortality hazard rate—which is
equivalent to aging—while holding the probability
of ruin constant has the same effect as increasing

Table 5. Sustainable Spending Rate That Results in a Given Probability of 
Ruin for Various Portfolios at Different Retirement Ages 

Current Age
Hazard

Rate

Portfolio: Arithmetic Return, [Volatility], and (Geometric Return)

3.00%
[10.00%]
(2.50%)

4.00%
[10.00%]
(3.50%)

5.00%
[12.00%]
(4.28%

6.00%
[15.00%]
(4.88%)

7.00%
[17.00%]
(5.56%)

8.00%
[20.00%]
(6.00%)

A. Probability of ruin 10%

Endowment 0.00% $1.22 $1.95 $2.24 $2.22 $2.37 $2.20

50 2.47 2.54 3.20 3.52 3.55 3.72 3.56

55 2.48 2.55 3.21 3.52 3.55 3.72 3.57

60 2.96 2.81 3.47 3.79 3.82 3.99 3.84

65 3.67 3.20 3.85 4.17 4.20 4.38 4.23

70 4.75 3.79 4.44 4.75 4.80 4.97 4.82

75 6.48 4.74 5.38 5.70 5.75 5.92 5.77

80 9.37 6.33 6.96 7.28 7.33 7.51 7.37

B. Probability of ruin 5%

Endowment 0.00% $0.99 $1.64 $1.86 $1.76 $1.84 $1.64

50 2.47 1.95 2.52 2.77 2.73 2.84 2.64

55 2.48 1.96 2.53 2.77 2.74 2.84 2.65

60 2.96 2.15 2.72 2.96 2.93 3.04 2.85

65 3.67 2.44 3.00 3.24 3.22 3.32 3.13

70 4.75 2.88 3.43 3.67 3.66 3.76 3.58

75 6.48 3.58 4.12 4.37 4.36 4.47 4.28

80 9.37% 4.76 5.29 5.54 5.53 5.65 5.46
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the portfolio rate of return and decreasing the port-
folio volatility. An implication is that females, who
are expected to live three to five years longer than
males, on average, and thus have a lower rate of
death at any given age, should be spending less in
order to maintain the same (low) probability of ruin
that males need.

Even with the most tolerant attitude toward
the risk of ruin, a retiree should be spending no
more than, with the notation used in this article,
(μ – σ2 + λ) percent of the initial nest egg, where λ
is ln(2) divided by the median future lifetime. This
spending rate should be sustainable, on average,
because the expected value of $1 consumption for
life is (μ – σ2 + λ)–1.

Here is another way to think about average
sustainability. Note that μ – σ2 is even lower than the
(continuously compounded) geometric mean μ –
0.5σ2. If the arithmetic mean return is 7 percent, then
the geometric mean return is μ – 0.5σ2 = 5 percent
and the quantity μ – σ2 = 3 percent, for σ = 20 percent
volatility. Thus, a retiree who is satisfied with aver-
age sustainability can plan to spend only 3 percent
plus an additional 0.693 divided by her or his
median remaining lifetime. A median of 10 more
retirement years can add 6.9 percentage points to
spending; a median of 20 and 30 more retirement
years adds, respectively, 3.5 percentage points and
2.3 percentage points. For an endowment or foun-
dation, λ = 0 and, therefore, average sustainability
can be achieved only by spending no more than 3
percent of contributed capital. Of course, if the
assumed 20 percent volatility can be reduced by
further diversification, these static spending rates
can obviously be increased. But then again, using a
higher volatility might be a prudent hedge against
model misspecification—specifically, the “jump

and crash” risk that is not adequately captured in a
lognormal distribution. 

We want to stress that we are not advocating
ruin minimization as a normative investment strat-
egy. Notwithstanding its inconsistency with ratio-
nal utility maximization, Browne (1999) and Young
have both documented the uncomfortably high
degrees of leverage such a dynamic policy might
entail. Rather, we believe that the probability of
retirement ruin is a useful risk metric that can help
retirees understand the link between their desired
spending patterns, retirement age, and the current
composition of their investment portfolios.

Indeed, the concept of a stochastic present
value of a retirement plan can be used beyond the
limited scope of computing probabilities of ruin.
For example, one can use this idea to investigate the
impact of including payout annuities or nonlinear
instruments in a retiree’s (or endowment’s) portfo-
lio. Similarly, the SPV can be used to compare the
relative tax efficiency of various asset location deci-
sions for retirement income products and the role
of life annuities in increasing the sustainability of a
given spending rate. For example, we have found
that including zero-cost collars in the retiree’s port-
folio (i.e., selling out-of-the-money calls whose
funds are then used to purchase out-of-the-money
puts) shifts the SPV toward zero, which reduces the
probability of ruin and increases the sustainability
of the portfolio. In summary, we urge the financial
industry to focus on designing products that max-
imize income sustainability over a random retire-
ment horizon.

We would like to thank Jin Wang and Anna Abaimova
for research assistance and Tom Salisbury and Kwok Ho,
with whom we had very helpful discussions during the
development of this research.

Notes
1. The National Association of College and University Busi-

ness Officers endowment survey conducted in 2004 showed
that the median endowment spending rate in 2003 was 5.0
percent of assets, with the 10th percentile being 4.0 percent
and the 90th percentile being 6.4 percent.

2. Using several free Web-based simulators, we ran some case
studies and found wide variations in the suggested “nest
egg” needed to support a comfortable retirement. A similar
concern about the variation in simulation outcomes—which
was misinterpreted as a criticism of the Monte Carlo
method—was echoed recently by McCarthy (2002/2003).

3. The spreadsheet is available by selecting this article from
the November/December contents page on the FAJ website
at www.cfapubs.org.

4. We provide an analysis of the effect of this assumption in
an online technical appendix.

5. We discuss the question of reasonable return distribution
assumptions later. 

6. The more technically inclined readers might want more
than simply a formula. A proof that Equation 8 is the proper
distribution of the stochastic present value is based on
moment-matching techniques and the partial differential
equations for the probability of ruin based on Equation 2b.
We believe that a variant of this result can be traced back to
Merton. For more details, proofs, and restrictions, see
Milevsky (1997), Browne (1999), or Milevsky (forthcoming
2006)—specifically, the actuarial, financial, and insurance
references contained in this last article.
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7. For those readers who remain unconvinced that what is
effectively the “sum of lognormals” can converge to the
inverse of a gamma distribution, we suggest they simulate
the SPV for a reasonably long horizon and conduct a
Kolmogorov–Smirnov goodness-of-fit test of the inverse of
these numbers against the gamma distribution with the
parameters given by α = (2μ + 4λ)/(σ2 + λ) – 1 and β = (σ2

+ λ)/2. As long as the volatility parameter, σ, is not abnor-
mally high relative to the expected return, μ, they will get
convergence of the relevant integrand.

8. By “exact” probability of ruin, we mean the outcome from
using a complete actuarial mortality table starting at age 65
to discount all future cash flows rather than using the
exponential lifetime approximation. See Huang, Milevsky,

and Wang (2004) for more details about the accuracy of such
an approximation based on partial differential equation
(PDE) methods. 

9. A variant of this “probabilistic spending” rule was designed
by one of the authors and was recently implemented by the
Florida State Board of Administration for its billion-dollar
Lawton Chiles Endowment Fund. Each year, the trustees of
the fund compute the probability of preserving its real value
and then adjust spending up or down accordingly. See
www.sbafla.com/pdf/funds/LCEF_TFIP_2003_02_25.pdf
for more information.

10. For example, Whitehouse (2004) described the benefits of
analytic PDE-based solutions over Monte Carlo simulations.

References
Altschuler, G. 2000. “Endowment Payout Rates Are Too Stingy.”
Chronicle of Higher Education (31 March):B8.

Ameriks, J., M. Veres, and M. Warshawsky. 2001. “Making
Retirement Income Last a Lifetime.” Journal of Financial Planning
(December):60–76.

Arnott, R.D. 2004. “Editor’s Corner: Sustainable Spending in a
Lower-Return World.” Financial Analysts Journal, vol. 60, no. 5
(September/October):6–9.

Bengen, W.P. 1994. “Determining Withdrawal Rates Using
Historical Data.” Journal of Financial Planning, vol. 7, no. 4
(October):171–181.

Browne, S. 1995. “Optimal Investment Policies for a Firm with
a Random Risk Process: Exponential Utility and Minimizing the
Probability of Ruin.” Mathematics of Operations Research, vol. 20,
no. 4 (November):937–958.

———. 1999. “The Risk and Reward of Minimizing Shortfall
Probability.” Journal of Portfolio Management, vol. 25, no. 4
(Summer):76–85.

Cooley, P.L., C.M. Hubbard, and D.T. Walz. 1998. “Retirement
Spending: Choosing a Withdrawal Rate That Is Sustainable.”
Journal of the American Association of Individual Investors, vol. 20,
no. 1 (February):39–47.

———. 2003. “Does International Diversification Increase the
Sustainable Withdrawal Rates from Retirement Portfolios?”
Journal of Financial Planning (January):74–80.

Dybvig, P.H. 1999. “Using Asset Allocation to Protect
Spending.” Financial Analysts Journal, vol. 55, no. 1 (January/
February):49–62.

Ennis, R.M., and J.P. Williamson. 1976. “Spending Policy for
Educational Endowment.” Research Publication Project of the
Common Fund.

Guyton, J.T. 2004. “Decision Rules and Portfolio Management
for Retirees: Is the ‘Safe’ Initial Withdrawal Rate Too Safe?”
Journal of Financial Planning (October):50–60.

Hannon, D., and D. Hammond. 2003. “The Looming Crisis in
Endowment Spending.” Journal of Investing, vol. 12, no. 3
(Fall):9–20. 

Ho, K., M. Milevsky, and C. Robinson. 1994. “How to Avoid
Outliving Your Money.” Canadian Investment Review, vol. 7, no. 3
(Fall):35–38.

Huang, H., M.A. Milevsky, and J. Wang. 2004. “Ruined Moments
in Your Life: How Good Are the Approximations?” Insurance:
Mathematics and Economics, vol. 34, no. 3 (June):421–447. 

Ibbotson Associates. 2004. Stocks, Bonds, Bills and Inflation: 2004
Yearbook. Chicago, IL: Ibbotson Associates.

Leibowitz, M.L., and R.D. Henriksson. 1989. “Portfolio
Optimization with Shortfall Constraints: A Confidence-Limit
Approach to Managing Downside Risk.” Financial Analysts
Journal, vol. 45, no. 2 (March/April):34–41.

Levy, H., and R. Duchin. 2004. “Asset Return Distributions and
the Investment Horizon.” Journal of Portfolio Management, vol. 30,
no. 3 (Spring):47–62.

Markowitz, H.M. 1991. “Individual versus Institutional
Investing.” Financial Services Review, vol. 1, no. 1:1–8.

McCarthy, Ed. 2002/2003. “Puzzling Predictions.” Bloomberg
Wealth Manager (December/January):39–54.

Merton, R. 1975. “An Asymptotic Theory of Growth under
Uncertainty.” Review of Economic Studies, vol. 42, no. 3:375–393.
Reprinted in 1992 as Chapter 17 in Continuous-Time Finance,
revised edition, Blackwell Press.

Milevsky, M.A. 1997. “The Present Value of a Stochastic
Perpetuity and the Gamma Distribution.” Insurance:
Mathematics and Economics, vol. 20, no. 3:243–250.

———. Forthcoming 2006. The Calculus of Retirement Income:
Financial Models for Pensions and Insurance. Cambridge
University Press.

Pye, G. 2000. “Sustainable Investment Withdrawals.” Journal of
Portfolio Management, vol. 26, no. 3 (Summer):13–27.

Rubinstein, M. 1991. “Continuously Rebalanced Investment
Strategies.” Journal of Portfolio Management, vol. 18, no. 1
(Fall):78–81.

Tobin, J. 1974. “What Is Permanent Endowment Income?”
American Economic Review, vol. 64, no. 2:427–432.

Whitehouse, Kaja. 2004. “Tool Tells How Long Nest Egg Will
Last.” Wall Street Journal (31 August):2.

Young, V.R. 2004. “Optimal Investment Strategy to Minimize
the Probability of Lifetime Ruin.” North American Actuarial
Journal, vol. 8, no. 4:106–126.


	Text1: Copyright 2005, CFA Institute. Reproduced and republished from  Financial Analysts Journal with permission from CFA Institute. All Rights Reserved.


